Decision Theoretic Rough Set-Based Neighborhood for Self-Organizing Map
نویسندگان
چکیده
منابع مشابه
Decision-Theoretic Rough Set Models
Decision-theoretic rough set models are a probabilistic extension of the algebraic rough set model. The required parameters for defining probabilistic lower and upper approximations are calculated based on more familiar notions of costs (risks) through the well-known Bayesian decision procedure. We review and revisit the decision-theoretic models and present new results. It is shown that we nee...
متن کاملNGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملFuzzy Rough Granular Self Organizing Map
A fuzzy rough granular self organizing map (FRGSOM) is proposed for clustering patterns from overlapping regions using competitive learning of the Kohonen’s self organizing map. The development strategy of the FRGSOM is mainly based on granular input vector and initial connection weights. The input vector is described in terms of fuzzy granules low, medium or high, and the number of granulation...
متن کاملDouble-quantitative decision-theoretic rough set
The probabilistic rough set (PRS) and the graded rough set (GRS) are two quantification models that measure relative and absolute quantitative information between the equivalence class and a basic concept, respectively. As a special PRS model, the decision-theoretic rough set (DTRS) mainly utilizes the conditional probability to express relative quantification. However, it ignores absolute quan...
متن کاملAttribute Reduction in Utility-Based Decision-Theoretic Rough Set Models
Decision-theoretic rough set (DTRS) model, proposed by Yao in the early 1990’s, introduces Bayesian decision procedure and loss function in rough set theory. Considering utility function in decision processing, utility-based decision-theoretic rough set model (UDTRS) is given in this paper. The utility of the positive region, the boundary region and the negative region are obtained respectively...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SN Computer Science
سال: 2021
ISSN: 2662-995X,2661-8907
DOI: 10.1007/s42979-021-00490-2